

Autonomous Rehabilitation and Maintenance of Natural Gas Pipes

Gerald Wilson, Autonomic Materials, Inc.

Team Members: UIUC (Professors Nancy Sottos, Jeff Moore and Paul Braun), CMU (Professor Howie Choset), Redion Services (Robert Ragland)

Project Vision

We are developing a rehabilitation system for natural gas pipes that will result in a structurally and functionally independent pipe within an existing legacy pipe. The pipe material will will resist damage mechanisms envisioned. The system will take advantage of embedded self-healing and self-reporting agents, which will arrest damage and prevent further propagation and highlight damage areas for more extensive maintenance, respectively.

Total Project Cost:	\$5.56M
Length	36 mo.

Project Objectives & Approach

Develop a rehabilitation solution for natural gas at a cost of < \$1MM/mile
 OBJECTIVES
 PROPOSED APPROACH

New Pipe; Structurally and Functionally Independent of Original Pipe

Rehabilitation Material with Mechanical Properties
Supporting 50-Year Life

New Rehabilitation Incorporating Smart Features

Remote/Robotic Deployment and Inspection

Extruded-in-Place Pipe-in-Pipe System (ExiPiPTM); Leverage FROMP of DCPD

Leverage Mechanical Properties of FROMP-Cured Poly(DCPD)

Screen well-evaluated self-healing and self-reporting chemistries for integration into the poly(DCPD) pipe

Development of Novel extrusion nozzle and robotic tools for pipe inspection, and new pipe deployment

Concept

uncured liquid monomer \rightarrow solid polymer

x3

5 mm

Extrusion Nozzle with Heating Element to Initiate Cross-linking of DCPD; Poly (DCPD) exhibits Modulus and Tensile Strength Comparable to Oven-Cured BPA Epoxy but with Fracture Toughness of 5x

Drive robot and functional modules

Monomer/Catalyst Blend Feed to Extrusion Head

Visual, thermal and UV sensors for assessing rehabilitation feasibility, degree of cure of new pipe and ongoing integrity management

Team Responsibilities

Category 2 Smart Materials Coating Development (UIUC + AMI) nozzle

- Develop Extruded-in Place Material
 - > Frontal curing of DCPD inside a pipe
 - > Optimize resin formulation
 - > Modify rheology for nozzle extrusion
 - > Characterize properties
- Develop Smart Additive Solutions for Self-Healing and Self-Reporting
 - Microencapsulation of healing & reporting agents
 - > Environmental stability
 - > Formulation scale up
 - > Performance assessment

Category 5 Integrated Solution Testing (AMI + Redion + GTI)

- Review Best Practices
- Work Safety and Environmental Risk Review
- Preliminary Field Trials

Category 3 Coating Deposition Tool Development (CMU)

- Cable Laying Robot
 - > Thread cable and perform go/no-go inspection
- Coating Deposition Robot
 - > Material deposition nozzle (with UIUC)
 - > Material management

Category 4 Pre- and Post-Inspection Tool Development (CMU)

- Pre-Inspection and Post-Inspection Robots
 - > Post-installation pipe property characterization
 - Post-deployment UV light/camera module
 - > Algorithms to process/analyze sensor readings

Extrusion, Nozzle Design and Scale Up

Original Lab-Scale Deposition Nozzle

Intermediate Scale Deposition Nozzle

Intermediate Scale mixing of resin and catalyst

- On-the-fly mixing of two components ease storage, delivery, and deployment of resin system
- Modified resin and catalyst can be mixed together using a static inline mixer close to extruder head
- Next steps increase the scale of delivery using gear pumps and integration with robotic systems

Intermediate Scale Extrusion Trials

- ► Base resin: Dicyclopentadiene (DCPD) and 2nd generation Grubbs Catalyst (G2)
- Scale-Up: 2mm batch print to 12" continuous extrusion
- Resin system modified to increase viscosity from ~10cP to ~4000cP to allow for better sag resistance and forming
- Further modification with chemical inhibitors to greatly increase working time
- Modified resin and catalyst system has been successfully extruded to target pipe wall thickness of 0.2" (0.51cm) inside of a 2.5" PVC pipe
- Next Steps Extruding at 12" diameter and integration with robotic systems

Self-Healing and Self-Reporting

Encapsulated DCPD

Damage with reporting material under Florescent lighting

Damage with reporting material under 365nm UV light

- Self-healing: Healing Agents have been encapsulated and initial Reference TDCB testing shows up to 70% healing efficiency
- Self-Reporting: Material encapsulated and proof of concept demonstrated in poly(DCPD) Matrix

Scaleup and Sourcing Considerations

 Monomer purity an important factor in FROMP Kinetics. Sourcing and evaluation efforts ensured compliance with costing goals

POC Robot Year 1 Summary

- Completed POC robot
 - Accomplishments
 - Finished drivetrain design
 - Finished first unit assembly
 - Tested robot in pipe (video 1)
- Next Steps
 - Sensor controlled movement with POC robot platform (video 2)
 - Develop final version robot in parallel

Sensor Payload Summary

- Completed sensor design including:
 - Module A Forward facing Go/No-Go
 - Front facing camera
 - Module B Post extrusion inspection
 - Side facing camera
 - Thermal sensor
 - UV inspection sensor
- Next step:
 - Sensor guided tasks

Sensor board fabricated

Challenges and Risks

Technical

- Reaction kinetics and effect on pipe extrusion rate and control
- Broad set of levers including monomer types and mix ratios, catalyst types and loadings curing temperatures to manage risk
- Understanding the effects of scale on nozzle design

Organizational

- Program design anticipated more face-to-face and hands-on collaboration (essential in a large group with multiple collaborators)
- Requires intentional and deliberate organizational structure to facilitate project management
- Generally leading to a challenge with our deliverable timetables

Supply Chain

Delays in acquiring key materials and components

Talent

Some turnover in team and recruiting new personnel is increasingly challenging

Potential Partnerships

Mapping Capabilities

Combination of ExiPiP™ Rehabilitation system with mapping module developed by CMU will lead to a more complete solution

Surface Preparation and Installation Experience

Partners with more insights on installation conditions

Contact:

gw@autonomicmaterials.com

Summary

- Our Extruded-in-Place Pipe-in-Pipe (ExiPiP™) solution will allow for the installation of a new structurally independent pipe without the need for excavation
- The pipe material will be highly resistant to damage but will incorporate self-healing and self reporting functionality in the event of damage
- Follow-on phase/program:
 - Extensive field testing and refinement; broad scope of application development engagements to develop ExiPiPTM platform tunability – engaging regional partners for alternative funding sources
- Team Acknowledgements:

